Neuromorphic Computing helps robots keep learning

Neuromorphic research chip Loihi demonstrates real-time learning with 175x lower energy.

  • 2 years ago Posted in

Intel Labs, in collaboration with the Italian Institute of Technology and the Technical University of Munich, has introduced a new approach to neural network-based object learning. It specifically targets future applications like robotic assistants that interact with unconstrained environments, including in logistics, healthcare or elderly care. This research is a crucial step in improving the capabilities of future assistive or manufacturing robots. It uses neuromorphic computing through new interactive online object learning methods to enable robots to learn new objects after deployment.

 

Using these new models, Intel and its collaborators successfully demonstrated continual interactive learning on Intel’s neuromorphic research chip, Loihi, measuring up to 175x lower energy to learn a new object instance with similar or better speed and accuracy compared to conventional methods running on a central processing unit (CPU). To accomplish this, researchers implemented a spiking neural network architecture on Loihi that localized learning to a single layer of plastic synapses and accounted for different object views by recruiting new neurons on demand. This enabled the learning process to unfold autonomously while interacting with the user.

The research was published in the paper “Interactive continual learning for robots: a neuromorphic approach,” which was named “Best Paper” at this year’s International Conference on Neuromorphic Systems (ICONS) hosted by Oak Ridge National Laboratory.   

 

“When a human learns a new object, they take a look, turn it around, ask what it is, and then they’re able to recognize it again in all kinds of settings and conditions instantaneously,” said Yulia Sandamirskaya, robotics research lead in Intel’s neuromorphic computing lab and senior author of the paper. “Our goal is to apply similar capabilities to future robots that work in interactive settings, enabling them to adapt to the unforeseen and work more naturally alongside humans. Our results with Loihi reinforce the value of neuromorphic computing for the future of robotics.”

Kodesage, a pioneering startup specializing in AI-powered solutions for legacy software...
Next-generation AI tool will enhance operational efficiency, address global talent shortages, and...
Following a successful Early Access Program, the addition of Mentor to the OutSystems platform...
90% of U.S. IT executives say they have business processes that would be improved by agentic AI.
Informatica has released its annual “CDO Insights 2025” study in which 600 data leaders from...
Perfecto’s new AI Validation moves autonomous testing closer to reality through context-aware...
Data reveals a more pragmatic approach to AI adoption, prioritizing ROI on investments.
New research from Civo highlights the significant challenges faced by AI and machine learning (ML)...