Densify brings Machine Learning to automated optimisation of containers

Densify is launching machine learning capabilities that will automatically optimise use of containers. This technology will enable companies to be more efficient, limit wasted cloud spend, improve application uptime and scalability, and reduce performance risk. With Densify, organisations can ensure their containers are being deployed to their full potential.

Using machine learning, Densify can predict the utilisation pattern of containerised applications and provide recommendations for the optimal resource requests and limits. This allows cloud operations teams to understand if their containerised applications are running in an optimal manner: If they are starved for resources, are they subject to performance risks? If they have over-allocated resources, could they be made more efficient?

Densify’s machine learning capabilities will provide visibility into what’s running, what resources are being allocated, and the true utilisation of an organisation’s Kubernetes environment at a cluster, namespace, and container level. The product will also provide individual container details, including historical utilisation patterns. This ensures the cloud operations team has a grip on their environment and can communicate what’s going on to their business partners and executive team.

“Use of containers is growing rapidly, with 80% of organisations actively deploying containers or planning to in the near future,” said Gerry Smith, CEO, Densify. “And yet, far too many companies are blindly tackling containers without fully understanding the impact on application health. With our new advanced machine learning capabilities, Densify customers can optimise their containers to maintain application performance, reduce risk, with the lowest possible spend.”

Densify’s fully automatable recommendations will be accessible via API and have available integrations with infrastructure as code frameworks, such as Terraform, CloudFormations, and Ansible. Automation Engineers can easily deliver optimally sized containerised applications for their business, avoiding application performance risks by proactively ensuring that resources are being appropriately allocated. In addition, Densify helps optimise cluster resources by ensuring that containers are not causing waste due to over-allocation of unnecessary resources. This allows companies to do more with their currently purchased infrastructure or reduce costs by reducing their cloud infrastructure footprint.

Finally, customers can easily integrate with existing DevOps processes by using Densify’s Optimisation as Code framework to deliver Continuous Integration, Continuous Delivery, and Continuous Optimisation (CI/CD/CO) to the DevOps toolchain.

New integrations, broad marketplace access empower customers using cloud, security, and...
Failure to prioritise testing and integrate generative AI tools raises concerns as agentic AI adds...
AI portfolio adds enhancements to Red Hat OpenShift AI and Red Hat Enterprise Linux AI to help...
Customers now have a single place to rapidly build, deploy, and orchestrate powerful enterprise...
New AI-powered digital agents accelerate identity security operations and decision-making.
Endava has launched its latest research report “AI and the Digital Shift: Reinventing the...
The operations team deployed AI to visualise, troubleshoot, and rapidly resolve networking issues...
Zscaler has released the ThreatLabz 2025 AI Security Report, based on insights from more than 536...